Periodic motions for multy-wells potentials and layers dynamic for the vector Allen-Cahn equation

Giorgio Fusco

Abstract

Let $W : \mathbb{R}^m \to \mathbb{R}$ a potential that satisfies

$$0 = W(a) < W(u), \ a \in A, \ u \in \mathbb{R}^m \setminus A,$$

where $A \subset \mathbb{R}^m$ is a finite set with at least two distinct elements. We consider the Hamiltonian system

$$u'' = W_u(u), \ W_u(u) = \left(\frac{\partial W}{\partial u_1}(u), \dots, \frac{\partial W}{\partial u_m}(u)\right)^\top,$$

and, given a small number $\delta > 0$ and $N \ge 2$ points $a_1, \ldots, a_N \in A$ with $a_j \ne a_{j+1}$, $j = 1, \ldots, N-1$ and $a_N \ne a_1$ we study the existence of periodic solutions $u_{\delta} : \mathbb{R} \to \mathbb{R}^m$ that satisfies

$$|u_{\delta}(s_{j}^{\delta}) - a_{j}| < \delta, \quad j = 1, \dots, N,$$

for some $s_1^{\delta} < \ldots < s_N^{\delta} \in [0, T^{\delta})$, $T^{\delta} > 0$ the period of u^{δ} . We also discuss the problem of layers dynamics for the vector Allen-Cahn equation

$$u_t = \epsilon^2 u_{xx} - W_u(u), \ x \in (0,1),$$

with periodic boundary conditions.